The generalized Gelfand – Graev characters of GL n ( F q ) ( extended abstract )
نویسندگان
چکیده
Introduced by Kawanaka in order to find the unipotent representations of finite groups of Lie type, generalized Gelfand–Graev characters have remained somewhat mysterious. Even in the case of the finite general linear groups, the combinatorics of their decompositions has not been worked out. This paper re-interprets Kawanaka’s definition in type A in a way that gives far more flexibility in computations. We use these alternate constructions to show how to obtain generalized Gelfand–Graev representations directly from the maximal unipotent subgroups. We also explicitly decompose the corresponding generalized Gelfand–Graev characters in terms of unipotent representations, thereby recovering the Kostka–Foulkes polynomials as multiplicities. Résumé. Introduits par Kawanaka pour trouver des représentations unipotentes de groupes finis de type Lie, les caractères généralisés de Gelfand–Graev sont restés en quelque sorte mystérieux. Même dans le cas des groupes généraux linéaires finis, la combinatoire de leurs décompositions n’a pas été étudiée. Cet article réinterprète la définition de Kawanaka en type A d’une façon qui offre bien plus de flexibilité pour les calculs. Nous utilisons ces constructions alternatives pour montrer comment obtenir les représentations de Gelfand–Graev directement depuis les sous-groupes unipotents maximaux. Nous décomposons aussi explicitement les caractères généralisés de Gelfand– Graev correspondants en termes de représentations unipotentes, et retrouvons ainsi comme multiplicités les polynômes de Kostka–Foulkes.
منابع مشابه
J an 2 00 9 TENSOR PRODUCTS OF IRREDUCIBLE REPRESENTATIONS OF THE GROUP GL ( 3 , F q )
We describe the tensor products of two irreducible linear complex representations of the group G = GL(3, Fq) in terms of induced representations by linear characters of maximal torii and also in terms of classical and generalized Gelfand-Graev representations. Our results include MacDonald’s conjectures for G and at the same time they are extensions to G of finite counterparts to classical resu...
متن کاملThe Space of Unipotently Supported Class Functions on a Finite Reductive Group
Let G be a connected reductive algebraic group over an algebraic closure F of the finite field Fq of q elements; assume G has an Fq-structure with associated Frobenius endomorphism F and let l be a prime distinct from the characteristic of Fq. In [DLM1, §7.1] and [DLM2] we outlined a program for the determination of the irreducible Ql-characters of the finite group G , which showed that the pro...
متن کاملGelfand-Graev Characters of the Finite Unitary Groups
Gelfand-Graev characters and their degenerate counterparts have an important role in the representation theory of finite groups of Lie type. Using a characteristic map to translate the character theory of the finite unitary groups into the language of symmetric functions, we study degenerate Gelfand-Graev characters of the finite unitary group from a combinatorial point of view. In particular, ...
متن کاملTHE SCHUR INDICES OF THE CUSPIDAL UNIPOTENT CHARACTERS OF THE FINITE CHEVALLEY GROUPS E7(q)
We show that the two cuspidal unipotent characters of a finite Chevalley group E7(q) have Schur index 2, provided that q is an even power of a (sufficiently large) prime number p such that p ≡ 1 mod 4. The proof uses a refinement of Kawanaka’s generalized Gelfand–Graev representations and some explicit computations with the CHEVIE computer algebra system.
متن کاملOn a Hypergeometric Identity of Gelfand, Graev and Retakh
A hypergeometric identity equating a triple sum to a single sum, originally found by Gelfand, Graev and Retakh [Russian Math. Surveys 47 (1992), 1–88] by using systems of differential equations, is given hypergeometric proofs. As a bonus, several q-analogues can be derived.
متن کامل